Survival of injured spinal motoneurons in adult rat upon treatment with glial cell line-derived neurotrophic factor at 2 weeks but not at 4 weeks after root avulsion.
نویسندگان
چکیده
We conducted a study of whether treatment with glial cell line-derived neurotrophic factor (GDNF) initiated at 2 or 4 weeks after spinal-root avulsion could promote survival and regulate neuronal nitric oxide synthase (nNOS) expression in adult rat spinal motoneurons. By 6 weeks after root avulsion, the treatment given at 2 weeks not only increased motoneuron survival (86.1% vs. 27.9%), but also reversed the atrophy of injured motoneurons and increased their somatic size (101.3% vs. 52.9%) in comparison to the untreated control group of animals. All surviving motoneurons in the GDNF-treated group showed immunoreactivity for choline acetyltransferase. In contrast, GDNF treatment at 4 weeks post-injury failed to promote motoneuron survival (33.1% vs. 27.9%) at 6 weeks compared to the control group. Both the 2- and 4-week post-injury treatments downregulated nNOS expression. This finding suggests that injured adult motoneurons die shortly (a few weeks in the rat) after root avulsion injury, but can be saved from degeneration by treatment within the proper time frame after injury, which in the case of GDNF treatment in rats, appears to be within 2 weeks of the avulsion injury of the spinal root. These findings provide useful information for choosing the best time frame for the potential clinical treatment of brachial plexus avulsion.
منابع مشابه
Implantation of neurotrophic factor-treated sensory nerve graft enhances survival and axonal regeneration of motoneurons after spinal root avulsion.
We previously showed that motor nerves are superior to sensory nerves in promoting axon regeneration after spinal root avulsion. It is, however, impractical to use motor nerves as grafts. One potential approach to enhancing axonal regeneration using sensory nerves is to deliver trophic factors to the graft. Here, we examined the regulation of receptors for brain-derived neurotrophic factor, gli...
متن کاملRescue of adult mouse motoneurons from injury-induced cell death by glial cell line-derived neurotrophic factor.
Glial cell line-derived neurotrophic factor (GDNF) has been shown to rescue developing motoneurons in vivo and in vitro from both naturally occurring and axotomy-induced cell death. To test whether GDNF has trophic effects on adult motoneurons, we used a mouse model of injury-induced adult motoneuron degeneration. Injuring adult motoneuron axons at the exit point of the nerve from the spinal co...
متن کاملAntisense oligos to neuronal nitric oxide synthase aggravate motoneuron death induced by spinal root avulsion in adult rat.
The present study used nitric oxide synthase (nNOS) antisense oligos (nNOS AS-ODN) to assess the role of nNOS in motoneuron death induced by spinal root avulsion. A right seventh cervical (C7) spinal root avulsion was performed on adult male Sprague-Dawley rats. Two weeks later, FITC-labeled random oligos (FITC-R-ODN), nNOS AS-ODN, R-ODN or TE buffer was applied to the lesioned side of the C7 s...
متن کاملDelayed implantation of a peripheral nerve graft reduces motoneuron survival but does not affect regeneration following spinal root avulsion in adult rats.
Adult spinal motoneurons can regenerate their axons into a peripheral nerve (PN) graft following root avulsion injury if the graft is implanted immediately after the lesion is induced. The present study was designed to determine how avulsed motoneurons respond to a PN graft if implantation takes place a few days to a few weeks later. Survival, regeneration, and gene expression changes of injure...
متن کاملInduction of c-Jun phosphorylation in spinal motoneurons in neonatal and adult rats following axonal injury.
This study aims to address if phosphorylation of the transcription factor c-Jun is associated with lesion-induced death of spinal motoneurons, and if this cellular response is modulated by glial-cell-line-derived neurotrophic factor (GDNF). We found that after both distal axotomy and root avulsion, spinal motoneurons in neonatal rats expressed phosphorylated c-Jun (p-c-Jun) and almost all injur...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurotrauma
دوره 23 6 شماره
صفحات -
تاریخ انتشار 2006